Fragility of spectral flow in topological insulators

Matthew S. Foster

December 12, 2023

A. Altland, P. Brouwer, J. Dieplinger, M. S. Foster, M. Moreno-Gonzalez, and L. Trifunovic **arXiv:2308.12931**

Chiral anomaly and spectral flow

- Massless Dirac Hamiltonian in d = 1: $\hat{h} = -iv_F \,\hat{\sigma}^3 \frac{d}{dx}$
- This is a 2-band semimetal

Chiral anomaly and spectral flow

- Massless Dirac Hamiltonian in d = 1: $\hat{h} = -iv_F \,\hat{\sigma}^3 \frac{d}{dx}$
- Couple 1+1-D Dirac to electromagnetism: Axial anomaly
 - **1.** Electric "2-current" is conserved $\partial_t \rho + \partial_x J = 0$
 - 2. Axial (swap) 2-current is not

$$\partial_t \left(\frac{J}{v_F} \right) + \partial_x \left(v_F \rho \right) = \frac{2e^2}{h} E$$
 s

Schwinger 1962

Axial current non-conservation: Material realizations

$$\frac{1}{v_F}\frac{dJ}{dt} = e\frac{d}{dt}\left(n_R - n_L\right) = \frac{2e^2}{h}E$$

 Newton's 2nd law, 1D wire: <u>Left-movers</u> convert to right-movers (through the bottom of the band, not shown)

Chiral anomaly and spectral flow

What if we could physically separate right- and left-movers?

Chiral anomaly and spectral flow

What if we could physically separate right- and left-movers?

"Spectral Flow Principle" for topological matter!

1. 1D chiral edge states of a quantum Hall droplet

Anderson Localization is ubiquitous in 1,2-D...Topological exceptions

1. 1D chiral edge states of a quantum Hall droplet 2. At the quantum phase transition between Hall plateaux

Anderson Localization is ubiquitous in 1,2-D...Topological exceptions

What does a non-localized, plateau-transition wave function look like?

Anderson Localization is ubiquitous in 1,2-D...Topological exceptions

What does a non-localized, plateau-transition wave function look like?

2D Dirac fractality: ... Topology?

- Where else can Anderson localization be avoided in 2D?
- 2+1-D Dirac fermions with gauge disorder...but no "natural" realization in graphene, TI surface, etc.

$$\hat{h} = v_F \left\{ \hat{\sigma}^1 \left[-i\partial_x + A_x(\mathbf{r}) \right] + \hat{\sigma}^2 \left[-i\partial_y + A_y(\mathbf{r}) \right] \right\}$$

2D Dirac fractality: ... Topology?

- Where else can Anderson localization be avoided in 2D?
- 2+1-D Dirac fermions with gauge disorder...but no "natural" realization in graphene, TI surface, etc.

$$\hat{h} = v_F \left\{ \hat{\sigma}^1 \left[-i\partial_x + A_x(\mathbf{r}) \right] + \hat{\sigma}^2 \left[-i\partial_y + A_y(\mathbf{r}) \right] \right\}$$

- "Quenched" QED or QCD: disorder can be abelian or non-abelian (for multiple cones)
- Exact solution (conformal field theory): Zero-energy eigenstate is always extended (multifractal)

Ludwig, Fisher, Shankar, Grinstein (1994) Nersesyan, Tsvelik, Wenger (1995) Mudry, Chamon, Wen (1996) Caux, Kogan, Tsvelik (1996)

From the 2018 film "Annihilation"

$$\hat{h} = v_F \left\{ \hat{\sigma}^1 \left[-i\partial_x + A_x(\mathbf{r}) \right] + \hat{\sigma}^2 \left[-i\partial_y + A_y(\mathbf{r}) \right] \right\}$$

Schnyder, Ryu, Furusaki, Ludwig (2008):

- These are surface states of new topological phases in 3D!
- Bulk of these new phases: Topological superconductors!

Class	Т	Р	S	Spin sym.	d = 2	d = 3	Topological realization	Replicated fermion NLoM
C A (unitary) D	0 0 0	$-1 \\ 0 \\ +1$	0 0 0	SU(2) U(1)	2ℤ ℤ ℤ	· · · · · · ·	SQHE (2D $d + id$ TSC) IQHE TQHE (2D $p + ip$ TSC)	$\frac{\operatorname{Sp}(4n)/\operatorname{U}(2n)}{\operatorname{U}(2n)/\operatorname{U}(n)\otimes\operatorname{U}(n)}$ $\operatorname{O}(2n)/\operatorname{U}(n)$
CI AIII DIII	$^{+1}_{0}$ -1	$-1 \\ 0 \\ +1$	1 1 1	SU(2) U(1)	\ldots \mathbb{Z}_2	2ℤ ℤ ℤ	3D TSC 3D TSC, chiral TI 3D TSC (³ He- <i>B</i>)	$\begin{array}{l} \operatorname{Sp}(4n) \otimes \operatorname{Sp}(4n)/\operatorname{Sp}(4n) \\ \operatorname{U}(2n) \otimes \operatorname{U}(2n)/\operatorname{U}(2n) \\ \operatorname{O}(2n) \otimes \operatorname{O}(2n)/\operatorname{O}(2n) \end{array}$
AI (orthogonal) AII (symplectic)	$^{+1}_{-1}$	0 0	0 0	SU(2)	\mathbb{Z}_2	\mathbb{Z}_2	 2D, 3D TIs	$\frac{\operatorname{Sp}(4n)/\operatorname{Sp}(2n)\otimes\operatorname{Sp}(2n)}{\operatorname{O}(2n)/\operatorname{O}(n)\otimes\operatorname{O}(n)}$
BDI CII	$+1 \\ -1$	+1 -1	1 1	SU(2)		\mathbb{Z}_2	3D chiral TI	${f U}(2n)/{f Sp}(2n)\ {f U}(2n)/{f O}(2n)$

Schnyder, Ryu, Furusaki, Ludwig (2008):

- These are surface states of new topological phases in 3D!
- Bulk of these new phases: Topological superconductors!

- Zero-energy state is "topologically protected" (not localized)
- ...what about all of the others?

$$\hat{h} = v_F \left(-i\hat{\sigma}^1 \left[-i\partial_x + A_x(\mathbf{r}) \right] - i\hat{\sigma}^2 \left[-i\partial_y + A_y(\mathbf{r}) \right] \right)$$

Class	Т	Р	S	Spin sym.	d = 2	d = 3	Topological realization	Replicated fermion NLoM
C A (unitary) D	0 0 0	$-1 \\ 0 \\ +1$	0 0 0	SU(2) U(1)	2ℤ ℤ ℤ	· · · · · · ·	SQHE (2D $d + id$ TSC) IQHE TQHE (2D $p + ip$ TSC)	$\begin{array}{c} \operatorname{Sp}(4n)/\operatorname{U}(2n)\\ \operatorname{U}(2n)/\operatorname{U}(n)\otimes\operatorname{U}(n)\\ \operatorname{O}(2n)/\operatorname{U}(n) \end{array}$
CI AIII DIII	$^{+1}_{0}$ -1	$-1 \\ 0 \\ +1$	1 1 1	SU(2) U(1)	$\dots \mathbb{Z}_2$	2ℤ ℤ ℤ	3D TSC 3D TSC, chiral TI 3D TSC (³ He- <i>B</i>)	$\begin{array}{l} \operatorname{Sp}(4n) \otimes \operatorname{Sp}(4n)/\operatorname{Sp}(4n) \\ \operatorname{U}(2n) \otimes \operatorname{U}(2n)/\operatorname{U}(2n) \\ \operatorname{O}(2n) \otimes \operatorname{O}(2n)/\operatorname{O}(2n) \end{array}$
AI (orthogonal) AII (symplectic)	$^{+1}_{-1}$	0 0	0 0	SU(2)	\mathbb{Z}_2	\mathbb{Z}_2	 2D, 3D TIs	$\frac{\operatorname{Sp}(4n)/\operatorname{Sp}(2n)\otimes\operatorname{Sp}(2n)}{\operatorname{O}(2n)/\operatorname{O}(n)\otimes\operatorname{O}(n)}$
BDI CII	$+1 \\ -1$	+1 -1	1 1	SU(2)		\mathbb{Z}_2	3D chiral TI	${f U(2n)}/{f Sp(2n)}\ {f U(2n)}/{f O(2n)}$

3D topological superconductors: Spectrum-wide quantum criticality

Class	Т	Р	S	Spin sym.	d = 2	d = 3	Topological realization	Replicated fermion NLoM
C A (unitary) D	0 0 0	$-1 \\ 0 \\ +1$	0 0 0	SU(2) U(1)	2Z Z Z	· · · · · · ·	SQHE (2D $d + id$ TSC) IQHE TQHE (2D $p + ip$ TSC)	$\begin{array}{c} \operatorname{Sp}(4n)/\operatorname{U}(2n)\\ \operatorname{U}(2n)/\operatorname{U}(n)\otimes\operatorname{U}(n)\\ \operatorname{O}(2n)/\operatorname{U}(n) \end{array}$
CI AIII DIII	$^{+1}_{0}$ -1	$-1 \\ 0 \\ +1$	1 1 1	SU(2) U(1)	\dots \mathbb{Z}_2	2 Z Z	3D TSC 3D TSC, chiral TI 3D TSC (³ He- <i>B</i>)	$\begin{array}{l} \operatorname{Sp}(4n) \otimes \operatorname{Sp}(4n)/\operatorname{Sp}(4n) \\ \operatorname{U}(2n) \otimes \operatorname{U}(2n)/\operatorname{U}(2n) \\ \operatorname{O}(2n) \otimes \operatorname{O}(2n)/\operatorname{O}(2n) \end{array}$
AI (orthogonal) AII (symplectic)	$^{+1}_{-1}$	0 0	0 0	SU(2)	\mathbb{Z}_2	\mathbb{Z}_2	 2D, 3D TIs	$\frac{\operatorname{Sp}(4n)/\operatorname{Sp}(2n)\otimes\operatorname{Sp}(2n)}{\operatorname{O}(2n)/\operatorname{O}(n)\otimes\operatorname{O}(n)}$
BDI CII	$+1 \\ -1$	+1 -1	1 1	SU(2)		\mathbb{Z}_2	3D chiral TI	$\frac{\mathrm{U}(2n)/\mathrm{Sp}(2n)}{\mathrm{U}(2n)/\mathrm{O}(2n)}$

Spectrum-wide quantum criticality conjecture:

Ghorashi, Liao, Foster PRL (2018)

Generic surface states of 3D topological superconductors are critical, statistically identical to plateau transition states in 2D quantum Hall effects

3D topological superconductors: Spectrum-wide quantum criticality

Class	Т	Р	S	Spin sym.	d = 2	d = 3	Topological realization	Replicated fermion NLoM
C A (unitary) D	0 0 0	$-1 \\ 0 \\ +1$	0 0 0	SU(2) U(1)	2Z Z Z	· · · · · · ·	SQHE (2D $d + id$ TSC) IQHE TQHE (2D $p + ip$ TSC)	$\begin{array}{c} \operatorname{Sp}(4n)/\operatorname{U}(2n)\\ \operatorname{U}(2n)/\operatorname{U}(n)\otimes\operatorname{U}(n)\\ \operatorname{O}(2n)/\operatorname{U}(n) \end{array}$
CI AIII DIII	$^{+1}_{0}$	$-1 \\ 0 \\ +1$	1 1 1	SU(2) U(1)	\dots \mathbb{Z}_2	2 Z Z	3D TSC 3D TSC, chiral TI 3D TSC (³ He- <i>B</i>)	$\begin{array}{l} \operatorname{Sp}(4n) \otimes \operatorname{Sp}(4n)/\operatorname{Sp}(4n) \\ \operatorname{U}(2n) \otimes \operatorname{U}(2n)/\operatorname{U}(2n) \\ \operatorname{O}(2n) \otimes \operatorname{O}(2n)/\operatorname{O}(2n) \end{array}$
AI (orthogonal) AII (symplectic)	$^{+1}_{-1}$	0 0	0 0	SU(2)	\mathbb{Z}_2	\mathbb{Z}_2	 2D, 3D TIs	$\frac{\operatorname{Sp}(4n)/\operatorname{Sp}(2n)\otimes\operatorname{Sp}(2n)}{\operatorname{O}(2n)/\operatorname{O}(n)\otimes\operatorname{O}(n)}$
BDI CII	$^{+1}_{-1}$	+1 -1	1 1	SU(2)		\mathbb{Z}_2	3D chiral TI	${f U(2n)}/{f Sp(2n)}\ {f U(2n)}/{f O(2n)}$

Spectrum-wide quantum criticality conjecture:

Generic surface states of 3D topological superconductors are critical, statistically identical to plateau transition states in 2D quantum Hall effects

Numerical study: 2D Dirac surface states of 3D TSCs

- 1. Ghorashi, Liao, Foster PRL (2018)
- 2. Sbierski, Karcher, Foster PRX (2020)
- 3. Ghorashi, Karcher, Davis, Foster PRB (2020)

Review: Karcher and Foster Ann Phys (2021)

Numerical study: 2D Dirac surface states are protected at ALL energies!

- 1. Ghorashi, Liao, Foster PRL (2018)
- 2. Sbierski, Karcher, Foster PRX (2020)
- 3. Ghorashi, Karcher, Davis, Foster PRB (2020)

Review: Karcher and Foster Ann Phys (2021)

Numerical study: 2D Dirac surface states are protected at ALL energies!

- 1. Ghorashi, Liao, Foster PRL (2018)
- 2. Sbierski, Karcher, Foster PRX (2020)
- 3. Ghorashi, Karcher, Davis, Foster PRB (2020)

Review: Karcher and Foster Ann Phys (2021)

- We consider a certain lattice model of an All topological phase
- There is a strange perturbation that we can add uniformly to the surface (possessing Dirac surface states)

A. Altland, P. Brouwer, J. Dieplinger, M. S. Foster, M. Moreno-Gonzalez, and L. Trifunovic **arXiv:2308.12931**

- We consider a certain lattice model of an All topological phase
- There is a strange perturbation that we can add uniformly to the surface (possessing Dirac surface states)
 - 1. It preserves the defining symmetry of the class

A. Altland, P. Brouwer, J. Dieplinger, M. S. Foster, M. Moreno-Gonzalez, and L. Trifunovic **arXiv:2308.12931**

- We consider a certain lattice model of an All topological phase
- There is a strange perturbation that we can add uniformly to the surface (possessing Dirac surface states)
 - 1. It preserves the defining symmetry of the class
 - 2. It projects to zero in the Dirac description of the surface

$$\hat{h} = v_F \left\{ \hat{\boldsymbol{\sigma}} \cdot \left[-i\boldsymbol{\nabla} + \mathbf{A}(\mathbf{r}) \right] \right\}$$

- We consider a certain lattice model of an All topological phase
- There is a strange perturbation that we can add uniformly to the surface (possessing Dirac surface states)

3. ...and, it interrupts spectral flow!

... Enter the "UFO" (Fragmenting potential)

4. ...and it Anderson localizes almost all surface states!

- Black data: No UFO. Spectrum-wide criticality (no localization)
- Blue data: Uniform UFO. Localization except at E = 0.
- Green data: Random UFO...spectrum-wide critical again!

... Enter the "UFO" (Fragmenting potential)

4. ...and it Anderson localizes almost all surface states!

- All surface states conduct without the UFO
- Almost none conduct with it...unless random with zero average
- Dirac equation can't tell the difference (UFO projects to zero!)

Back to Quantum Hall...

- Edge view: Axial anomaly of 1+1-D Dirac equation
- Bulk view: Topological winding number W due to Berry curvature

$$\Omega_{\mathbf{k}} = i \left\langle d\alpha_{\mathbf{k}} \right| \wedge d\alpha_{\mathbf{k}} \right\rangle, \qquad W = \frac{1}{2\pi} \int_{\mathbf{k}} \Omega_{\mathbf{k}}$$

The "UFO" (fragmenting potential)

 Induces surface Berry curvature "in the sky," Not captured by the Dirac equation for the surface (Berry-flat)

$$\psi_{\text{Surf}}^{(\text{Dirac})}(k_x, k_y) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ \pm \frac{(k_x + ik_y)}{|\mathbf{k}|} \end{bmatrix}$$

The "UFO" (fragmenting potential)

 Induces surface Berry curvature "in the sky," Not captured by the Dirac equation for the surface (Berry-flat)

The "UFO" (fragmenting potential)

 Induces surface Berry curvature "in the sky," Not captured by the Dirac equation for the surface (Berry-flat)

$$\psi_{\mathsf{Surf}}^{(\mathsf{Lattice})}(k_x, k_y) = \begin{bmatrix} \psi_1(\mathbf{k}) \\ \psi_2(\mathbf{k}) \\ \psi_3(\mathbf{k}) \\ \psi_4(\mathbf{k}) \end{bmatrix} \to \begin{bmatrix} 1 \\ \pm \frac{(k_x + ik_y)}{|\mathbf{k}|} \\ \pm 1 \\ \frac{(k_x + ik_y)}{|\mathbf{k}|} \end{bmatrix}$$

4 components deviate from Dirac, and develop Berry curvature!

- Induces surface Berry curvature "in the sky," Not captured by the Dirac equation for the surface (Berry-flat)
- Integrated surface Berry curvature:

:
$$\theta(E) = \pi + \int_{0 \le \varepsilon_k \le E} \Omega_k$$

The "UFO" (fragmenting potential)

• Explains when and how spectrum-wide criticality can occur

The "UFO" (fragmenting potential)

• Explains when and how spectrum-wide criticality can occur

- Explains when and how spectrum-wide criticality can occur
- Chiral edge mode "in the sky!"

- Explains when and how spectrum-wide criticality can occur
- Chiral edge mode "in the sky!"

- Explains when and how spectrum-wide criticality can occur
- Different signs of the potential introduce different surface domains of a "sky-Chern insulator"!
- 1D Chiral edge modes form at boundaries

- Different signs of the potential introduce different surface domains of a "sky-Chern insulator"!
- 1D Chiral edge modes form at boundaries
- Spectrum-wide quantum criticality: When these edge modes percolate! (Random UFO with zero average...)

Summary: Fragility of spectral flow in topological insulators

class
$$d = 1$$
 $d = 2$ $d = 3$
A 0 \mathbb{Z}^{\checkmark} 0
AIII \mathbb{Z}^{\times} 0 \mathbb{Z}^{\times}
AI 0 0 0
BDI \mathbb{Z}^{\times} 0 0
D \mathbb{Z}_{2}^{\times} \mathbb{Z}^{\checkmark} 0
DIII \mathbb{Z}_{2}^{\times} $\mathbb{Z}_{2}^{\checkmark}$ $\mathbb{Z}_{2}^{\checkmark}$
AII 0 $\mathbb{Z}_{2}^{\checkmark}$ $\mathbb{Z}_{2}^{\checkmark}$
CII 2 \mathbb{Z}^{\times} 0 \mathbb{Z}_{2}^{\times}
C 0 2 \mathbb{Z}^{\checkmark} 0

Not localizable
Localizable (e.g, UFO in 3D)

A. Altland, P. Brouwer, J. Dieplinger, M. S. Foster, M. Moreno-Gonzalez, and L. Trifunovic **arXiv:2308.12931**